Combined electrodialysis and ultrafiltration of an electrodeposition bath

Abstract

A method of controlling undesirable components in an electrodeposition bath comprising a film-forming vehicle resin in an aqueous medium, by subjecting at least a portion of the electrodepositable composition, simultaneously or at a separate time, to an electrodialysis process in conjunction with a selective separation process whereby process parameters and the properties of the deposited film are maintained.

Claims

2. Apparatus as in claim 1 wherein said electrodialysis compartment comprises a plant fiber membrane. 3. Apparatus as in claim 1 comprising means for flushing said counter-electrode compartment. 4. Apparatus as in claim 1 wherein said selective separation unit is an ultrafiltration unit.
United States Patent [191 Le Bras et a1. 1 1 COMBINED ELECTRODIALYSIS AND ULTRAFILTRATION OF AN ELECTRODEPOSITION BATH [75] Inventors: Louis R. Le Bras, Gibsonia; Robert R. Zwack, New Kensington, both of Pa. [73] Assignee: PPG Industries, Inc., Pittsburgh, Pa. [22] Filed: Mar. 13, 1972 [21] Appl. No.: 234,007 Related U.S. Application Data [62] Division of Ser. No. 123,299, March 11, 1971, Pat. [52] U.S. Cl. 204/301, 204/180 P, 204/181 {51] Int. Cl..... B0ld 13/02, B01k 5/02, C23b 13/00 [58] Field of Search 204/180 R, 180 P, [56] References Cited UNITED STATES PATENTS 3,230,162 1/1966 Gilchrist 204/181 1 Jan. 8, 1974 3,355,373 11/1967 Brewer et a1. 204/181 3,444,066 5/1969 Brewer et a1. 204/181 3,671,412 6/1972 Lohr 204/181 3,679,565 7/1972 Gilchrist 204/180 R Primary Examiner-John H. Mack Assistant Examiner-A. C. Prescott Att0rney-Russe1l A. Eberly [5 7] ABSTRACT 4 Claims, 3 Drawing Figures PATENTEUJAH 8 1974 saw 10F 2 COMBINED ELECTRODIALYSIS AND ULTRAFILTRATION OF AN ELECTRODEPOSITION BATH This is a division, of application Ser. No. 123,299, filed Mar. 11, 1971 now US. Pat. No. 3,663,406. BACKGROUND OF THE INVENTION Electrodeposition has recently received wide industrial acceptance as a method for applying protective and decorative coatings. The process of electrodepositing is well described in the art. Generally, an aqueous bath containing depositable coating composition is placed in contact with an electrically-conductive anode and an electrically-conductive cathode, and upon the passage of electric current (usually direct current) between the anode and cathode while in contact with the bath containing the coating composition, an adherent film of the coating composition is deposited, either on the anode or the cathode, depending upon the type of resin employed. The electrodeposition process parameters used vary widely. The voltage applied may vary from as low as, for example, 1 volt, or as high as, for example, 500 volts or higher. However, typically the voltage used ranges from 50 to 400 volts. The current demands are higher during the initial stage of the deposition process, but decrease as the deposited film insulates the particular conductive electrode. Generally, the electrode employed may be any electricallyconductive surface, such as iron, steel, aluminum, zinc, copper, chromium, magnesium, galvanized steel, phost phatized steel, as well as other metals and pretreated ylic acid or anhydride; interpolymers of a hydroxyalkyl ester of an unsaturated carboxylic acid and an unsaturated monomer; alkyd-amine vehicles; that is, vehicles containing an alkyd resin and an amine-aldehyde resin; and mixed esters of resinous polyols. The electrodepositability of various other materials, including a number of waxes and natural and synthetic resins, are also known in the art. In the past, great difficulty has been experienced in maintaining bath stability. That is, after continued bath usage and aging, solubilizing agent and other undesirable impurities and contaminants tend to accumulate in the bath. Such undesirable components deleteriously affect the coating process; for example, the voltage at which the deposited film ruptures drops significantly, conductivity of the bath increases, pH of the bath increases, and film thickness decreases, and the chemical and physical properties of the deposited film become unsatisfactory. It is known that bath stability may be improved by employing electrodialysis. By means of electrodialysis, undesirable contaminants and impurities which have a charge opposite the particular membrane-enclosed electrode are accelerated by an electromotive force through a semi-permeable membrane and thereby expelled from the system. ln addition to electrodialysis, selective separation processes such as ultrafiltration have been utilized to purge electrodepositable compositions of deleterious material. Although ultrafiltration is sufficient to control the undesirable contents of certain bath compositions, in some cases ultrafiltration alone is not sufficient to maintain a uniform product. For example, when potassium hydroxide is employed in the solubilization of an anionic vehicle, the potassium ions which accumulate during the electrodeposition process in the coating composition cannot in many instances be removed in sufficient quantity by employing ultrafiltration. Each of these systems, moreover, have certain disadvantages. Electrodialysis, while effective in removing counter-ions (ions of the opposite charge), does not remove other ions, many of which are highly undesirable, and does not remove other, uncharged low molecular weight species. Moreover, ions with slow diffusion rates or slow ion mobility may not be removed by electrodialysis at a rate which will enable optimum control of the operating parameter, and in some instances ions having a charge opposite to those ions sought to be removed by electrodialysis process will remain in the electrodepositable composition producing deleterious effects on the coating parameters and deposited coating. Ultrafiltration, on the other hand, removes all materials below a certain molecular size and when used sufficiently to remove all undesirable components tends also to remove some desirable ones. DESCRIPTION OF THE llNVENTlON Now it has been discovered that electrodepositable compositions that are not readily susceptible to complete control by either electrodialysis or ultrafiltration can be efficiently controlled by employing a combination of electrodialysis and a selective separation process such as ultrafiltration. By subjecting the electrodepositable composition to both electrodialysis and a selective separation process, virtually all ions, contaminants, and impurities can be purged from thesystem without substantially removing desired constituents. Generally, dialysis is the separation of solutes by means of their unequal diffusion rate through membranes, while in electrodialysis the passage of electrolyte through the membranes is accelerated by an electromotive force. The membranes employed in electrodialysis are frequently referred to as semi-permeable membranes and include various components which are interposed between two bodies of liquid so as to prevent their gross inter-mixture but which permit the passage of solvent and at least one of several solutes from one body of liquid to the other. Electrodialysis is controlled by electromotive force, diffusion rate and the membrane properties. The electromotive force may be the same as that used in the electrodeposition process, however, in many instances a different electromotive force is desirable. Diffusion is the force that drives the molecules and ions toward and when possible across the membranes. The nature of the membrane determines which molecular species can pass and which are held back. Thus, preparation and selection of suitable membranes is of particular importance. A variety of membranes may be employed in the electrodialysis as used in the present invention. These include conventional dialysis membranes such as regenerated cellulose on fabrics or felts; films of polyvinyl compounds as well as membrane materials which are not usually considered as dialysis membranes, but which produce the desired electrodialysis when employed in the electrodeposition process. Among the useful membranes are those comprised of woven or unwoven cloth, including cloth of various natural or synthetic fibers. Other membranse such as cloth treated with re-agents that dissolve cellulose-ammoniacal cupric salt solution or NaOh and carbon disulfide; protein for insolubilized gelatin-soybean protein and animal skin; inorganic membranes from precipitated silica; and ion-exchange membranes are also useful. Positively-charged membranes are selective to anions and impervious to cations, while negatively-charged membranes are selective to cations and impervious to anions. The choice of membrane depends in part upon the type of electrodepositable composition treated. The preferred membranes for use in the electrodialysis step of the invention are those made of a plain woven cloth comprising plant fibers, and selectively permeable ion-exchange membranes. The membranes comprising plant fibers are advantageous in that they have good durability for industrial use and the investment expense is low, while still having a remarkable degree of selectivity in their permeation characteristics. The plant fibers of the membrane may be fruit fibers, for example, coconut and the like; the fibers may be leaf fibers, for example, Manila hemp, New Zealand flax and the like; the fibers may be vegetable fibers, for example, seed fibers such as cottonseed and the like; and the fibers may be phloem fibers such as flax, linen, hemp, China grass, ramie, jute and the like. The plant fiber membranes need not necessarily be constructed of natural fibers, for example, synthetic fibers having high tensile strength may readily be interwoven with the plant fibers, thus adding strength and durability to the membrane. For a more complete discussion of plant fiber membranes, see U.S. Pat. No. 3,496,083. When a plant fiber membrane is immersed in an electrodepositable composition, the fibers generally swell in a direction that is perpendicular to the lengths of the fibers so that the swollen fibers produce a closely woven cloth, thus the pigment and vehicle portions of the electrodepositable composition are not readily passable through the cloth under such conditions. The plant fibers show a negative charge and thus are readily employed as an electrolytically negative diaphragm, that is, a diaphragm membrane that is permeable to cations and impervious to anions. Selectively permeable ion exchange membranes are also desirably employed in a manner similar to that of the plant fiber membranes. Using an ion-exchange membrane has advantages over using an unselective dialysis membrane to separate accumulated ions from the depositable compositions, in that the ion-exchange membranes normally have a lower electrical resistance than dialysis membranes, and thus being selective, provide for better control of the pH in the coating bath. Controlling the pH is of particular importance when the coating composition is in use, for in such case, the ion selective membrane permits a faster and more efficient passage of ions of opposite charge through it. Also, the resistivity of the receiving solvent, in contact with the electrode and confined by the membrane, can readily be reduced by the addition of a suitable ionizable material, such as soda ash, ammonium sulphate, sodium sulphate and sodium bicarbonate, without risk of contamination of the coating composition. In some cases, KOl-l solutions or amide solutions are used. The ion-exchange membranes employed in this invention may be prepared by the incorporation of finely divided ion-exchange resins in inert polymer matrices. Examples of such resins are fine beads of sulphonated crosslinked polystyrene in polyethylene, films produced from styrene/divinyl benzene copolymers, when subjected to such treatments as sulphonation to yield cation-exchanges or chloromethylation and amination to yield anion-exchangers, and films of graft copolymers comprising an inert backbone and a reactive grafted component such as styrene. The ioii excliange rnembranes erriployed generally have a pore size of less than 20A, for example, about 10 to 15A. Also, the fixed ion concentration of the membrane is usually at least one unit on the molarity scale, so that if the external concentration is not very high, they conduct almost exclusively by the migration of counter-ions. Typical ion-exchange membranes have sodium ion transport numbers of at least 0.8 or greater, in sodium chloride solutions of IM concentration. For a more complete description of the ion-exchange utilization in electrodialysis, see US. Pat. No. 3,419,488. Wlieri an anodid or anionic coating composition is employed, the negatively-charged vehicle will migrate under an electromotive force to the anode where the solubilizing agent is released, and thus positive-charged cations will migrate through the membrane. The reverse is true when a cathodic or cationic coating composition is employed. For example, if potassium hydroxide is utilized as a solubilizing agent in formulation of a depositable composition, the potassium ion released during the electrocoating process, and which tends to accumulate in the anode compartment, is removed by passage into a cathode compartment which is separated from the aqueous electrodepositable composition in the anode compartment by the membrane. When an acid-solubilized cationic resin, such as an amine-terminated polyamide or acrylic polymer is used, the acidic agent tends to accumulate in the anode compartment and is removed in a similar manner. The electrode compartment used in electrodialysis to separate the anode or cathode from the electrodepositable composition can be of any convenient shape. Perforated cylindrical-shaped plastic containers having the membrane mounted on such super-structure and the electrode encased therein have been employed. However, more commonly utilized structures are rectangular-shaped boxes having the electrode centrally located and the major walls of the said box parallel to the electrode and comprised of the membrane. Usually, the electrode compartment is equipped with an input and outlet connections to facilitate flushing the compartment. The electrode compartment may contain a receiving solvent (electrolyte) comprised of the aqueous depositable composition, but it is preferable to employ water in the electrode compartment, and, in particular, deionized water containing a minimum level of the electrolyte that is being removed. To prevent an accumulation of ions, means for periodic or continuous flushing of the electrode compartment with deionized water or a mixture of deionized water and a minimum level of the separable electrolyte is preferably provided. In some instances it is possible to fabricate the plant fiber membranes into a bag and by so doing avoid leaks and produce a suitable unit having a low cost construction. When the membrane employed does not ordinarily act as a dialysis membrane in the absence of a potential between the electrodes (as during shutdown periods), there is little tendency for accumulated ions to rediffuse through the membrane unless the electrolyte level in the electrode compartment is relatively high. Any such tendency can be corrected by continual flushing of the membrane-enclosed compartment or by employing a membrane that is impermeable to water, and also by maintaining a low electrolyte level in the membraneenclosed compartment. A cathode compartment (or if a cationic vehicle is employed, the anode compartment) need not be constructed for all the electrode plates, but the surface area of an exposed membrane may be varied depending on the degree of control desirable and also surface area of the article coated. When anionic vehicles are employed, other alkaline anions may be purged from the anode compartment, for example, ammonia, organic amines, sodium ions and the like. As mentioned above, while electrodialysis alone provides a useful degree of control of electrocoating bath compositions, it is not a complete solution to bath control. Ions of a charge opposite that of the membraneencased electrode still accumulate and cause undesirable effects on coating parameters and properties of the deposited coating. In potassium hydroxide solubilized systems, the removal of the potassium ion by electrodialysis using an ion exchange membrane may be satisfactory, but the buildup of anions and non-ionic ingredients may eventially cause an inbalance in the bath. In many cases, and particularly where plant fiber membranes are employed, the efficiency of potassium ion removal is usually not sufficient and a buildup of the potassium ion results, causing an inbalance in the bath. These problems are overcome by the present in vention by utilizing electrodialysis in conjunction with the selective separation process, such as ultrafiltration, which removes the accumulated ions and excess water from the dialyzed composition. The selective filtration process employed in the process of the instant invention is any process which separates water from the electrodeposition bath through a physical barrier while retaining the solubilized resin components. Thus, any means may be utilized which accomplishes this purpose. Means may pass not only water but also solute of substantially lower molecular weight than the vehicle resin such as excess amine, carbonates, low molecular weight solvent and simple organic or inorganic anions and cations which may be present in the bath. Examples of means for accomplishing this separation are reverse osmosis, where water of high purity may be obtained, and ultrafiltration, which is especially preferred. In the ultrafiltration process, exceptional control of a bath composition and removal of objectionable accumulated materials is achieved by selectively removing low molecular weight materials from the bath composition. This selective filtration process removes excess counter-ions and thus serves as a method of conventional bath control, but in addition,this method further removes other excess materials or contaminants from the bath. Ultrafiltration separates materials below a given molecular weight size from the electrodeposition bath. With properly selected membranes, this treatment does not remove in substantial amounts any product or desirable resin from the paint in the tank, but does remove anionic, cationic and non--ionic materials from the paint in a ratio proportional to their concentration in the water phase of the paint. Thus, for example, it is possible to remove amines, alkaline metal ions, phosphates, chromates, sulfates, solvents and dissolved carbon dioxide, among others. Ultrafiltration may be defined as a method of concentrating solute while removing solvent, or selectively removing solvent and low-molecular weight solute from a significantly higher molecular weight solute. From another aspect, it is a process of separation whereby a solution containing a solute of molecular dimensions significantly greater than the solvent is depleted of solute by being forced under a hydraulic pressure gradient to flow through a suitable membrane. The first definition is the one most fittingly describes the term ultrafiltration" as applied to an electrodeposition bath. Ultrafiltration thus encompasses all membranemoderated, pressure-activated separations wherein solvent or solvent and smaller molecules are separated from modest molecular weight macromolecules and colloids. The term ultrafiltration is generally broadly limited to describing separations involving solutes of molecular dimensions greater than about ten solvent molecular diameters and below the limit of resolution of the optical microscope, that is, about 0.5 micron. In the present process, water is considered the solvent. The principles of ultrafiltration and filters are discussed in a chapter entitled Ultrafiltration in the Spring, 1968, volume of ADVANCES IN SEPARA- TIONS AND PURIFICATIONS, E. S. Perry, Editor, John Wiley & Sons, New York, as well as in CHEMI- CAL ENGINEERING PROGRESS, Vol. 64, December, 1968, pages 31 through 43, which are hereby incorporated by reference. The basic ultrafiltration process is relatively simple. Solution to be ultrafiltered is confined under pressure, utilizing, for example, either a compressed gas or liquid pump in a cell, in contact with an appropriate filtration membrane supported on a porous support. Any membrane or filter having chemical integrity to the system being separated and having the: desired separation characteristic may be employed. Preferably, the contents of the cell should be subjected to at least moderate agitation to avoid accumulation of the retained solute on the membrane surface with the attendant binding of the membrane. Ultrafiltrate is continually produced and collected until the retained solute concentration in the cell solution reaches the desired level, or low molecular weight solute is removed. A suitable apparatus for conducting ultrafiltration is described in US. Pat. No. 3,495,465, which is hereby incorporated by reference. There are two types of ultrafiltration membranes. One is the microporous ultrafilter, which is a filter in the traditional sense, that is, a rigid, highly-voided structure containing interconnected random pores of extremely small average size. Through such a structure, solvent (in the case of electrodeposition, water) flows essentially viscously under a hydraulic pressure d luent H gradient, the flow rate proportional to the pressure difference, dissolved solutes, to the extent that their hydrated molecule dimensions are smaller than the smallest pores within the structure, will pass through, little impeded by the matrix. Larger size molecules, on the other hand, will become trapped therein or upon the external surface of the membrane and will thereby be retained. Since the microporous ultrafilters are inherently susceptible to internal plugging or fouling by solute molecules whose dimensions lie within the pore size distribution of the filter, it is preferred to employ for a specific solute a microporous ultrafilter whose mean pore size is significantly smaller than the dimensions of the solute particle being retained. in contrast, the diffusive ultrafilter is a gel membrane through which both solvent and solutes are transported by molecular diffusion under the action ofa concentration of activity gradient. In such a structure, solute and solvent migration occurs via random thermal movements of molecules within and between the chain segments comprising the polymer network. Membranes prepared from highly hydrophilic polymers which swell to eliminate standard water are the most useful diffusive aqueous ultrafilter membranes. Since a diffusive ultrafilter contains no pores in the conventional sense and since concentration within the membrane of any solute retained by the membrane is low and timeindependent, such a filter is not plugged by retained solute, that is, there is no decline in solvent permeability with time at a constant pressure. This property is particularly important for a continuous concentration or separation operation. Both types of filters are known in the art. The presently preferred ultrafilter is an anisotropic membrane structure such as illustrated in FIG. 1. This structure consists of an extremely thin, about one-tenth to about ten micron layer, of a homogeneous polymer 1 supported upon a thicker layer of a microporous open-celled sponge 2, that is, a layer of about 20 microns to about 1 millimeter, although this dimension is not critical. If desired, this membrane can be further supported by a fibrous sheet, for example, paper, to provide greater strength and durability. These membranes are used with a thin film or skin side exposed to the high pressure solution. The support provided to the skin by the spongy substrate is adequate to prevent film rupture. Membranes useful in the process are items of commerce and can be obtained by several methods. One general method is described in Belgian Pat. No. 721,058. This patent describes a process which, in summa y ensuses. t 959 .5 5 a stesdqssqthq s The choice of specific chemical composition for the membrane is determined to a large extent by its resistance to the chemical environment. Membranes can be typically prepared from thermoplastic polymers such as polyvinyl chloride, polyacrylonitrile, polysulfones, poly(methyl methacrylate), polycarbonates, poly(nbutyl methacrylate), as well as a large group of copolymers formed from any of the monomeric units of the above polymers, including Polymer 360, a polysulfone copolymer. Cellulosic materials such as cellulose acetate may also be employed as membrane polymers. Some examples of specific anisotropic membranes operable in the process of the invention include Diaflow membrane ultrafilter PM-30, the membrane chemical composition of which is a polysulfone copolymer, Polymer 360, and which has the following permeability characteristics: Solute Retention Characteristics The membrane is chemically-resistant to acids (HCl, H H PO,, all concentrates), alkalis, high phosphite buffer and solutions of common salts as well as concentrated urea and guanadine hydrochloride. The membrane is solvent-resistant to alcohol, cetone and dioxane. The membrane is not solvent-resistant to dimethylformamide or dimethyl sulfoxide. This membrane is hereinafter referred to as Membrane A." Dorr-Oliver XPA membrane, the membrane chemical composition of which is Dynel (an acrylonitrilevinyl chloride copolymer) and which has the following permeability characteristics: Flux Molecular Percent (gaI./sq.ft./day at Solute Weight Retention 30 pli, l.0% solute) Cytochrome C 12.600 50 100 BChymotripsinagen 24,000 22 Ovalbumin 45.000 I00 45 mer in an organic solvent, (b) forming a film of the casting dope, and (c) preferentially contacting one side of said film with a diluent having high compatibility with the casting dope to effect precipitation of the polymer immediately upon coating the cast film with the This membrane is hereinafter referred to as Membrane B. Dorr-Oliver BPA type membrane, the membrane chemical composition of which is phenoxy resin (polyhydroxyether), and which has the following permeability characteristics: Flux Molecular Percent (gal./sq.ft./day at Solute Weight Retention 30 psi, 1.0% solute) Cytochrome C 12,600 50 30 This membrane is hereinafter referred to as Membrane C The microporous ultrafilters are generally isotropic structures, thus flow and retention properties are independent of flow direction. It is preferred to use an ultrafilter which is anisotropic in its microporous membrane structure, FIG. 2. In such a membrane, the pore size increases rapidly from one face to the other. When the fine-textured side 4 is used in contact with the feed solution, this filter is less susceptible to plugging since a particle which penetrates the topmost layer cannot become trapped in the membrane because of the larger pore size 5 in the substrate. The process of selective separation may be operated continuously or intermittently. In batch selective filtration or batch ultrafiltration a finite amount of material is placed in a cell which is pressurized. A solvent and lower molecular weight solutes are passed through the membrane. Agitation is provided by a stirrer, for example, a magnetic stirrer. Obviously, this system is best used for small batches of material. In a process requiring continuous separation, a continuous selective filtration process is preferred. Using this technique, material is continuously recirculated under pressure over a membrane or series of membranes through interconnecting flow channels, for example, spiral flow channels. Likewise, the ultrafiltration process may be conducted as either a concentration process or a diafiltration process. Concentration involves removing solvent and low molecular weight solute from an increasingly concentrated retentate. Filtration flow rate will decrease as the viscosity of the concentrate increases. Diafiltration, on the other hand, is a constant volume process whereby the starting material is connected to a reservoir of pure solvent, both of which are placed underpressure simultaneously. Once filtration begins, the pressure source is shut off in the filtration cell and thus, as the filtrate is removed, an equal volume of new solvent is introduced into the filtration cell to maintain the pressure balance. The configuration of the filter may also vary widely and is not limiting to the operation of the process. The filter or membrane may, for example, be in the form of a sheet, tubes, or hollow fiber bundles, among other configurations. Under ideal conditions, selected low molecular weight solutes would be filtered as readily as solvent and their concentration in the filtrate is equal to that in the retentate. Thus, for example, if a material is concentrated to equal volumes of filtrate and retentate, the concentration of low molecular weight solute in each would be th e sam e. A v n Using diafiltra tion, retentate solute concentration is not constant and the mathematical relationship is as follows: where C is the initial solute concentration, C, is the final solute concentration of the retentate, V is the volume of solute delivered to the cell (or the volume of the filtrate collected), and V is the initial solution volume (which remains constant). The ultrafiltration process employing a diffusive membrane ultrafilter retains the solubilized vehicle resin while passing water and low molecular weight solute, especially those with a molecular weight below about 500. As previously indicated, the filters discriminate as to molecular size rather than actual molecular weight, thus, these molecular weights merely establish an order of magnitude rather than a distinct molecular weight cut-off. Also, the particular charge on the low molecular weight solutes and ions that pass through the ultrafilter membrane is of little importance since there is no e.m.f. across the ultrafilter membrane, as contrasted with the electrodialysis membrane. Likewise, as previously indicated, the retained solutes may, in fact, be colloidal dispersions or molecular dispersions rather than true solutes. In the present process, a portion of the contents of the coating zone is continuously or intermittently passed, usually under pressure created by a pressurized gas or by means of pressure applied to the contained fluid, into contact with the ultrafilter. Obviously, if desired, the egress side of the filter may be maintained at a reduced pressure to create the pressure difference. The pressures necessary are not severe. The maxi mum pressure, in part, depends on the strength of the filter. The minimum pressure is that pressure required to force water and low molecular weight solute through the filter at a measurable rate. With the presently preferred membranes, the operating pressures are between about 10 and 150 p.s.i., preferably between about 25 and p.s.i. Under most circumstances, the ultrafilter should have a minimum initial flux rate, measured with the composition to be treated of at least about 3 gals./sq.-ft./day (24 hours) and preferably at least about 4.5 gal./sq.ft./day. As previously indicated, the bath composition should be in motion at the face of the filter to prevent the retained solute from impeding the flow through the filter. This may be accomplished by mechanized stirring or by fluid flow with a force vector to the filter surface. The retained solutes comprising the vehicle resin and pigment can be returned to the electrodeposition bath. If desired, the concentrate may be reconstituted by the addition of water either before entry to the bath or by adding water directly to the bath. The ultrafiltrate may readily be utilized to rinse the paint dragout back into the electrocoating bath or, if desirable, the rinsings may be passed to the drain. If there is present in the bath desirable materials which, because of their molecular size, are removed in the ultrafiltration process, these may likewise be returned to the bath either directly to the retained solute before entry to the bath, in the makeup feed as required, or independently. A number of electrodepositable resins are known and can be employed to provide the electrodepositable compositions which may be utilized within the scope of ultrafiltration. Virtually any water-soluble, waterdispersible or water-emulsifiable vehicle resin in an aqueous medium can be electrodeposited and, if filmforming, provides coatings which may be suitable for certain purposes. The present invention is applicable to any such process. Among the common electrodepositable compositions are those based upon polycarboxylic acid resins. In order to produce an electrodepositable composition from such polycarboxylic acid resins, it is necessary to at least partially neutralize the acid groups present with a base in order to disperse the resin in the aqueous electrodeposition bath. Inorganic bases such as metal hydroxides, especially potassium hydroxide, can be used, as can ammonia or organic bases such as amines. Water-soluble amines are often preferred. Commonly used amines include ethylamine, diethylamine, triethylamine, diethanolamine, and the like. Other base-solubilized polyacids which may be employed as electrodeposition vehicles include those taught in US. Pat. No. 3,392,165, which is incorporated herein by reference, wherein the acid groups rather than being solely polycarboxylic acid groups contain mineral acid groups such as phosphonic, sulfonic, sulfate and phosphate groups. The process of the instant invention is also applicable to cationic type vehicle resins, that is, vehicle resins which deposit on the cathode. These include polybases solubilized by means of an acid, for example, an amineterminated polyamine or an acrylic polymer solubilized with acetic acid. Other cationic polymers include reaction products of polyepoxides with amino-substituted boron esters and reaction products of polyepoxides with hydroxyl or carboxyl-containing amines. In addition to the vehicle resin, there may be present in the electrodepositable composition any desired pigmentor pigment composition, including practically any of the conventional types of pigments employed in the art. Sometimes there is incorporated into the pigment composition a dispersing or surface-active agent. Usually the pigment and surface-active agent, if any, are ground together in a portion of the vehicle, or alone in an aqueous medium, to make a paste and this is blended with the vehicle to produce a coating composition. In many instances, it is preferred to add to the electrodeposition bath certain additives to aid dispersibility, viscosity and/or film quality, such as a non-ionic modifier or solvent. There may also be included addi' tives such as anti-oxidants, wetting agents, anti-foaming agents, fungicides, bactericides and the like. In formulating the coating composition, ordinary tap water may be employed, but where such water contains a relatively high level of metals and cations, deionized water, i.e., water from which free ions have been removed by the passage through ion exchange resins, is preferably employed. Electrodepositable compositions, while referred to as solubilized, in fact are considered a complex solution, dispersion, suspension or combination of one or more of these classes, in water, which acts as an electrolyte under the influence of an electric current. While, no doubt, in some circumstances the vehicle resin is in solution, it is clear that in some instances and perhaps in most the vehicle resin is a dispersion which may be called a molecular dispersion of molecular size between a colloidal suspension and a true solution. The typical industrial electrodepositable composition also contains pigments, crosslinking resins and other adjuvants which are frequently combined with the vehicle resin in a chemical and a physical relationship. For example, the pigments are usually ground in a resin medium and are thus wetted with the vehicle resin. As can be readily appreciated then, an electrodepositable composition is complex in terms of the freedom or availability with respect to removal of a component or in terms of the apparent molecular size of a given vehicle component. Apparatus for carrying out the present process comprises an electrodeposition bath in which the electrode upon which the coating is deposited is separated from the counter-electrode, at least in part, by a membrane, semi-permeable or selectively permeable, thus forming an electrodialysis compartment, dividing the coating zone from the counter-electrode. A selective separation unit is connected to the coating bath zone and has a physical barrier which passes aqueous effluent while retaining the solubilizing resin components. Means are provided for operating the selective separation unit continuously or intermittently to treat at least a portion of the contents from the coating zone. It is usually preferred that the electrodialysis membrane be a plant fiber or an ion-exchange membrane and that the compartment comprising the electrodialysis membrane and counter-electrode have a suitable means for flushing the compartment. The preferred selective separation unit is an ultrafiltration unit. Illustrating such apparatus is FIG. 3 which is a schematic drawing depicting one embodiment of electrocoating apparatus suitable for use with the treating method herein described. Referring now to FIG. 3, a chemically-resistat tank 1 contains the aqueous coating composition. The electrode compartment 3, immersed in tank 1 and attached to tank 1 by fastening means 7 is fitted with a power source connector 5, imput line 9 and output line 11, to facilitate flushing of electrode compartment 3 as hereinbefore described. The electrode in electrode compartment 3 is connected to a DC. power source 21 by means of electrical conductor 23. The power source 21 is also connected to bus bar 27 via conductor 25. The bus bar 27 contains electrical contact plate 29 which is employed to energize hanger 31. Articles 33, to be coated, are shown approaching tank 1, immersed in, and exiting and are in electrical connection with hanger 31. Hanger 31 is supported by grounded conveyor 37 and insulated from the energized contact plate 29 by means of insulator 35. In addition, tank 1 is connected to selective separator 13 via valve 15. The aqueous composition continuously or intermittently enters the selective separator 13 through valve 15, and upon processing the concentrated component is returned to tank 1 via line 17. The effluent from the selective separator is removed to waste or further processing via line 19. As hereinabove described there may be several electrode compartments or, in some instances, it may be feasible to operate the tank periodically without employing membranes. In such a case, the electrode is simply removed from the compartment and thus installed in the bath without being enclosed by a membrane. The selective separator may also be operated when the electrodialysis apparatus is disengaged, simultaneously with the electrodialysis apparatus, when there is no coating being deposited, or while deposition is taking place but in the absence of electrodialysis. The embodiment presented in FIG. 3 is not intended to be a complete description of the required piping, pumping, power sources and electrical circuitry required, but is only presented by way of illustration and is not to be construed as limiting the invention disclosed herein in any way. The utilization of electrodialysis in combination with ultrafiltration in controlling and removing undesirable accumulated components in electrodepositable compositions is further described in conjunction with the following examples, which are to be considered illustra-. tive rather than limiting. All parts and percentages in the examples and throughout the specification are by weight unless otherwise indicated. In evaluating the electrodialysis and ultrafiltration combination, the following compositions were employed: Paste A Parts by Weight 20 percent maleinized oil* (total solids content 97.6 14.30 percent) Diethylamine 2.08 Mixed 20 minutes in a closed contained. There was then added: Deionized water 32.00 Dispersing agent (combination oil-soluble sulfonate and 1.48 non'ionic surfactant Witco 912] Anthracite coal (pigmentary) 20.00 Basic lead silicate 8.00 Manganese dioxide 2.00 Strontium chromate 2.00 * 20 percent maleic anhydride, 80 percent linseed oil maleinized oil having a viscosity of 100,000 centipoises. The above components were ground in a conventional zirco mill to a 7-% Hegman grind gauge reading. Paste A was reduced as follows: Composition B Parts by Weight Paste A 395.2 Dcionized water 667.4 Potassium hydroxide solution (15 percent in water) 414.8 Composition C Vehicle resin above at 100 percent solids content 1319.6 Wetting agent (sorbitan monolaurate) 129.6 Hexakis(methoxymethyhmelamine 159.8 Ethyl cellosolve 67.0 Mix 10 minutes and add: Composition B 1477.4 Mix 10 minutes and add: Deionized water 1015.2 Mix 10 minutes and add: Parts by Weight -Continued Composition C Parts by Weight Paste A 555.2 Mix 10 minutes and add: Deionized water 142.4 Composition C had the following characteristics: Solids content (percent) 45.] Pigment-tmbinder ratio 0.21/10 Composition C was reduced to produce Composition D (below). Composition D Composition C 2930.0 Deionized water 8070.0 Composition D had the following properties: " Milliequivalents of base An electrodepositing apparatus. which enabled the continual coating of coil stock was filled with 6,600 parts of Composition D. The electrodepositing apparatus was fitted with two cathode compartments, each cathode compartment being separated from the anode compartment by a cloth membrane. In this instance, the canvas membrane employed comprised a plain weave (Shachi No. 1) linen membrane. The cathode compartment utilized 1,380 parts of deionized water as a receiving solvent, into which a small amount of an electrolyte may be added which facilitates ease of starting the electrodialysis process by lowering the resistivity of the electrolyte. Such electrolytes may include amines and salts such as ammonium sulphate, sodium sulphate, soda ash, potassium hydroxide, and the like. After the electrodialysis process is effected, the diffusate may be periodically removed and replaced with fresh receiving solvent, or if desirable, the diffusate may be continually purged and replaced with fresh receiving solvent, which will prevent a buildup of deleteriour components in the diffusate. Composition D was continually deposited on aluminum coil stock (4 inches wide) and as the coating solids content was depleted, 220 parts of Composition C were added at the termination of every one-eighth cycle. By cycle" it is meant that sufficient. bath coating solids have been deposited on the aluminum stock, which would have depleted the bath of its entire solids content had it not been for the additions after each oneeighth cycle. Also, after each one-eighth cycle approximately 600 parts of the diffusate was exchanged with fresh receiving solvent. The diffusate collected at the end of one cycle had the following characteristics: MEQ/lOO grams total 4.41 pH 12.2 Conductivity, mhos/cm, F. 7300 Potassium cation (parts) 10.9 gm. as KOH At the termination of one cycle, the dialyzate (the dialyzed coating Composition D) had the following characteristics: pH 10.5 Conductivity, umhoslcm., 75F. 2950 MEG/100 grams total 7.96 MEQ/lOO grams solids 69.2 Solids content (percent) 1 1.5 The dialyzate (dialyzed coating Composition D) was then subjected to an ultrafiltration process which employed a Membrane B type at 50 p.s.i. The Membrane B had the characteristics as hereinabove described. The entire composition was subjected to ultrafiltration whereby 3,300 parts of ultrafiltrate were removed; dialyzate was again rediluted and subjected to ultrafiltration whereby an additional 2,780 parts of ultrafiltrate were removed. The ultrafiltrate had the following characteristics: pH 9.85 Conductivity, umhos at 75F. 1580 MEG/100 grams total 5.93 MEQ/l00 grams solids 59.3 Solids content (percent) 10.0 Nitrogen content (percent) 0.14 Ethyl Cellosolve (percent) 0.14 The dialyzed concentrate, in preparation for a second cycle of eleetrodialysis and ultrafiltration, was reconstituted as follows: During a second cycle Composition E was subjected to electrodialysis and ultrafiltration in a manner similar pH 10.0 to that employed in Cycle 1 except that tn the second a Cmducmmy, 75 C cycle the diffusate was continually removed and re- MEQ/lOO grams total 1.93 sends come, (pflcem) 1,15 placed at the rate of 100 c.c. per minute with fresh re- Nitrogen content (percent) 0.17 ei i g ol t CO (ppm) 160.0 Ethyl Cellosolve (percent) 049 The results of the first and second cycles are summa- Potassium hydroxide 6.6 l'lZeCl 111 the fOllOWlIlg table: TABLE 1 Dialyzed Dialyzed Dialyzed Dialyzed 1st cycle composi- Ultraultra- 2nd cycle composi- Ultra ultra- Dialyzed starting tion D Diffusate filtrate filtered starting tion E Difiusate filtrate filtered and ultracompostafter one after one after one concencomposiafter 2nd for 2nd for 2nd cqncenf ltered tion D cycle cycle cycle trate tion E cycle cycle cycle trate 1 product 3 Total pans potassium as [(011 24.5 31.2 10.1 5.7 24.2 24.3 Solids content (percent) 12.3 12.4 11.2 12.1 Ash (percent). 1.12 1.40 Nitrogen content v (pgrcent). 0.26 0.19 0.17 0.21 Total parts melamine 66.2 47.5 50.8 62.7 QO MEQZIiteL. L 8.65 9.20 9.20 Ethyl Cellosolve (percent) 0.48 0.56 0.20 0.40 W.S.A. MEQ/liter.. 2.50 2.20 1 mhosifiia: F 1 Reeonstituted with deionized water. Completely reconstituted with those desirable components which were removed. After the concentrate was reconstituted with deionized water, the following characteristics were obtained: In the following table some pertinent data and operating parameters are listed: Table I1 TABLE I" First Cycle Second Cycle Potassium hydroxide removed 42.9 percent by electrodialysis Potassium hydroxide removed 3l.l percent by electrodeposition and drag-out Potassium hydroxide removed 26.0 percent by ultrafiltration 44.! percent 30.4 percent 25.5 percent Another advantage of apparatus used in this inven- It is important to note the potassium content after electrodialysis and ultrafiltration (see Table I). At the termination of electrodialysis, the potassium content increased from 23.7 to 28.6 as grams of KOH; this in crease can be readily explained as due to the electrodeposition process in that, as the resin is deposited on the anode, the potassium is released to accumulate in the bath, and also as new feed material is introduced into the bath, the concentration of potassium increases because potassium hydroxide has been utilized as a solubilizing agent in the said feed material. The electrodialysis alone is not sufficient to maintain the potassium content at the initial concentration of Composition D. However, upon subjecting the dialyzed Composition D to ultrafiltration, the potassium content may be restored to an operable level. The second cycle utilizing Composition E produced results similar to those obtained in the hereinabovedescribed first cycle. In production operation, ultrafiltration and electrodialtion is that it provides for the accelerated removal of 20 y y be used similtaneously. thus p i i y, water from the coating zone. For example, it is especially useful to remove excess water which has been introduced into the coating zone by rinsing coated articles over the coating zone. By such rinsing over the coating zone, the drag-out material adhering to the electrocoated parts is returned to the coating zone, thus any solubilizing agent which would have been re moved is returned to the coating zone. When the process is carried out in this manner, the electrodialysis etc. would be relatively constant. Another embodiment of this invention, utilizing an epoxy ester resin system is set forth below. Essentially the same electrodeposition apparatus, membranes, and ultrafiltration unit as described in the previous embodiment were employed. The resin utilized was a tall oil fiatty acid-epoxy ester comprised of 45.08 percent Epon resin (Shell Chemicals Epon 829), 25.66 percent tall oil fatty acid, and and selective separation steps are operated for a time 29.26 percent maleinized tall oil fatty acid. The resin sufficient to remove both the excess water and the solubilizing agent which was returned to the coating zone. Utilizing the electrodeposition apparatus and composition described above, but operating the process to return dragout to the bath, the proportion of potassium hydroxide removed would be as shown in Table IV. had the following characteristics: Solids content (percent) 80.6 Viscosity (Centipoiscs) 68,000 Weight/gallon (pounds) 8.36 Acid number 57.5 TABLE IV First Cycle Second Cycle No Drag-out Drag-out No Drag-out Drag-out Rinse Rinse Rinse Rinse (Percent) (Percent) (Percent) (Percent) Potassium hydroxide removed by electrodialysis 42.9 42.9 44.1 44.1 Potassium hydroxide removed by drag-out 27.7 0.0 27.0 0.0 Potassium hydroxide removed by electrodeposition 3.4 3.4 3.4 3.4 Potassium hydroxide removed by ultrafiltration 26.0 53.7 25.5 52.5 in Table IV the data for the ultrafiltration step refleets an increased proportion of potassium hydroxide F Pans by weight removed; the increase is limited to the ultrafiltration step in this instance because in each cycle, the electrogpf yf d d I l- 9 u I O assium y FOX! 3 SO UUOI'] dialysis and electrodeposition processes are carriedout (15 percent in water) 275 prior to sub ecting the composition to ultrafiltration. Deior ized water 44.31 Thus, it would be expected that a variation in percentg zg'zm xgg 2%; age of Table IV would be obtained if the processes Carbon black 1: were performed simultaneously or in different se- Red iron oxide 1.03 quence. The above components were ground in a conventional zircoa mill to a 7-% Hegman grind gauge reading. Paste F was reduced as follows: Again, it will be observed that electrodialysis alone was insufficient to maintain the bath parameters, for example, during the electrodialysis process both the pH and conductivity of the bath con ti nued tg rise, and I were not restored to normal until after at least a portion Pa e F Composition G 136 80 of the bath was subjected to ultrafiltration. S I n E ox resin 313,70 In such compos1t1ons ad descr1bed, 1n the absence of P y Potassium hydroxlde solution ultrafiltration, the potass1um content in the bath would Percent 3H8 continue to rise bein d b Deionized water 40034 g accompame y an increase 1n Linseed oil fatty acids 5.50 0 pH and conduct1v1ty, wh1ch have a deleterious effect i agent on the deposited film thickness and other properties. *Amine-solubihzcd acrylic rcsm The undes1rable effects of increased potass1um content Composition G had the following characteristics: can now removed or Controlled Subjectmg at least a portlon of the bath to ultrafiltratton. Solids content (percent) 38.5 15 Also, in instances where it has been sought to control p 9.0 Pigmenpwbinder ratio 257/! the bath by the sole use of ultrafiltratlon, 1t has in many Pigment volume concentrati n cases been unsuccessful due to the slow rate of dlffu- (p sion of the potassium cation through the particular ultrafiltration membrane. In such instances, it has been Composltlo" G was reduced to Produce Composltlon 20 necessary to employ electrodialysis in conjunction with H as fOIIO the ultrafiltration process in order to provide for sufficomposmon H c1ent control of the bath, thus maintaining uniform Parts y Weig coatmg parameter and film properties. Composition B 892.42 The present process 1s of parneular importance when Deionized water 253758 an lon-exchange membrane 1s ut1l1zed 1n the electrodialysis step because of the low permeability of ion- A total of 6,600 parts of Composition H were Chargexchange membranes, which tends to cause a build-up ed into an electrocoating apparatus and the bath mm of water in the coating zone, especially when electrotents were turned over three times in a manner previcoated articles are rinsed over the tank or a low solids ously disclosed. After Composition H had been subfeed stock concentrate is used to replenish the bath. jected to electrodialysis and ultrafiltration, it was re- In addition to the membranes employed in the above constituted (Composition 1) by replacing those minute examples, other membranes of desired characteristics essential components that were removed during the can be utilized. For example, in the electrodialysis proelectrodialysis and ultrafiltration processes. Likewise, cess a double-weave hemp fiber membrane may be emafter the second cycle, Composition l was reconsituted ployed instead of a plain weave linen fiber membrane, (Composition J in a similar manner. or in the ultrafiltration process a Diaflow membrane As the bath was continually operating, the solids conultrafilter PM-30 (Membrane A) or a Dorr-Oliver tent was depleted and such depletion was restored at BPA membrane (Membrane C) can readily be subthe end of each one-eighth cycle with a sufficient quanstituted for Membrane B as hereinabove described tity of Composition G to restore the solids content to and utilized. the initial level. Of the total 1,200 parts catholyte that Although it is a preferred embodiment of this invenwere charged initially, 600 parts were replaced every tion to employ the combination of electrodialysisone-eighth cycle with fresh deionized water. The reultrafiltration as a method of controlling excess potassults of the three cycles are summarized in the follow- 4 sium hydroxide, the process herein is highly useful with ing Table V. o ther typ e s ofelectrodepositign systems. TABLE v Dia- Dialst Dia- 2nd lyzed 3rd lyzed cycle lyzed cycle comcycle c0mstartcom- Reconstanposi- Ultra- Recon startposiing p0si Diffus- Ultrastituted ing tion] Diffusfilrtate stituted ing tion J Difius Ultra- Reconcom tion H ate filtrate comcomafter ate for for comcomafter ate for filtrate stituted pos1- after 1 after t after 1 posiposi- 2nd 2nd 2nd posiposi- 3rd 3rd for 3rd compotion H cycle cycle cycle tionH tion 1 cycle cycle cycle tion I tion] cycle cycle cycle sition .l Total parts by weight.... 6600 7073 6744 6600 6885 6271 6600 H 9.45 10.35 12.2 9.6 9.65 9.75 10.05 9.8 9.6 . 4.63 Butyl alcohol (percent 0.54 Grams KGB/6600 grams Pall... 32.1 39.9 16.9 7.0 31.5 30.6 39.2 17.6 7.5 31.8 KOH removed (percent) Cycle No. 2 Cycle N0. 3 By electrodialysis 52.6 57.5 By ultrafiltration. 2L8 24.5 25.6 113.0 By drag-out Dialyzed and ultrafiltered product completely reconstituted with those desira ble components which were removed. The resinous vehicles which may be subjected to the ultrafiltration-electrodialysis processes may vary depending on desired result. For example, other resinous vehicles that may be employed include reaction products or adducts of a drying oil or semi-drying oil fatty acid ester with a dicarboxylic acid or anhydride; vehicles comprised of a fatty acid ester-unsaturated acid or anhydride reaction product modified with ethylenically unsaturated materials, if desired, further reacted with a polyol; partially neutralized interpolymers of hydroxyalkyl esters of unsaturated carboxylic acids, unsaturated carboxylic acids, and one or more other ethylenically unsaturated monomers; vehicles comprising an alkyd resin and an amine-aldehyde resin; and the like. Various electrodepositable cationic vehicle resins, such as cationic polyoxides, amine-terminated polyamides, and amine'terminated acrylic polymers, may be employed. The solubilizing agents utilized may also vary, for example, amines such as diethylamine, triethanolamine, and morpholine may be substituted for potassium hydroxide. Hexakis(methoxymethyhmelamine may likewise be replaced by urea-melamine or benzoguanamine. Other additives that may be used in the electrodepositable compositions include, for example, wetting agent such as petroleum sulfonate, sulfated fatty amines, esters of sodium isothionates, and the like; anti-oxidants such as orthoamylphenol or cresol; and anti-foaming agents, suspending agents, bactericides, and the like. According to the provisions of the patent statutes, there are described above the invention and what are now considered its best embodiments; however, within the scope of the appended claims, it is to be understood that the invention can be practiced otherwise than as specifically described. We claim: 1. Apparatus for treating an electrodeposition bath, which comprises in combination: a. an electrodeposition bath tank; b. an electrodialysis compartment dividing said electrodeposition bath tank into a coating zone and a counter-electrode compartment 7 by a rnen brane, said membrane being either semi-permeable or selectively permeable; c. a selective separation unit having a physical barrier which passes aqueous effluent while retaining the solubilized resin components, said selective separation unit being either a reverse osmosis unit or an ultrafiltration unit; and d. means for continuously or intermittently passing at least a portion of the contents of said coating zone into said selective separation unit. 2. Apparatus as in claim 1 wherein said electrodialysis compartment comprises a plant fiber membrane. 3. Apparatus as in claim 1 comprising means for flushing said counter-electrode compartment. 4. Apparatus as in claim 1 wherein said selective separation unit is an ultrafiltration unit.

Description

Topics

Download Full PDF Version (Non-Commercial Use)

Patent Citations (5)

    Publication numberPublication dateAssigneeTitle
    US-3230162-AJanuary 18, 1966Ford Motor CoElectropainting process and paint binder concentrate composition therefor
    US-3355373-ANovember 28, 1967Ford Motor CoMethod for adjusting the bath composition in a continuous electrodeposition process
    US-3444066-AMay 13, 1969Ford Motor CoMethod of electrically induced deposition of paint on conductors
    US-3671412-AJune 20, 1972Du PontProcess for the removal of ionic contaminants from an electrocoating bath
    US-3679565-AJuly 25, 1972Scm CorpProcess for electrolytic treatment of liquors using pressure cell with porous electrode means

NO-Patent Citations (0)

    Title

Cited By (19)

    Publication numberPublication dateAssigneeTitle
    DE-10132349-A1January 30, 2003Eisenmann FoerdertechVerfahren und Anlage zur elektrophoretischen, insbesondere kataphoretischen, Tauchlackierung von Gegenständen
    DE-10132349-B4August 17, 2006Eisenmann Maschinenbau Gmbh & Co. KgVerfahren und Anlage zur kataphoretischen Tauchlackierung von Gegenständen
    EP-0176373-A1April 02, 1986UNIVERSITE DES SCIENCES ET TECHNIQUES DU LANGUEDOC (Montpellier I)Process for treating water and effluents by ultrafiltration and electrolysis, and apparatus therefor
    EP-0318827-A2June 07, 1989BASF AktiengesellschaftVerfahren zum Entfernen von Säure aus kathodischen Elektrotauchlackier-Bädern mittels Elektrodialyse
    EP-0318827-A3June 14, 1989Basf AktiengesellschaftElectrodialysis process for removing acids from cataphoretic painting baths
    FR-2567914-A1January 24, 1986Univ LanguedocProcede de recuperation de cations metalliques en continu a partir de solutions diluees et appareil pour sa mise en oeuvre
    US-2004026249-A1February 12, 2004Whatmore Roger W, Wilson Steve AElectric- field structuring of composite materials
    US-2005224357-A1October 13, 2005Britta Scheller, Orlando WexMethod and device for treating flat and flexible work pieces
    US-3945900-AMarch 23, 1976Dorr-Oliver IncorporatedElectro ultrafiltration process and apparatus
    US-4031000-AJune 21, 1977Kureha Kagaku Kogyo Kabushiki KaishaDiaphragm for electrolytic production of caustic alkali
    US-4643815-AFebruary 17, 1987Metokote CorporationElectrocoating method and apparatus
    US-4663014-AMay 05, 1987I. Jay BassettElectrodeposition coating apparatus
    US-4755273-AJuly 05, 1988Bassett I Jay, Case Leo LCover for coating tanks
    US-4786386-ANovember 22, 1988Universite des Sciences et Techniques du Languedoc (Montpelier I)Process and apparatus for the treatment of water and effluents by ultra-filtration and electrolysis
    US-5114554-AMay 19, 1992Basf AktiengesellschaftRemoval of acid from cathodic electrocoating baths by electrodialysis
    US-5512173-AApril 30, 1996Nippon Rensui Co., Nitivy Co., Ltd.Demineralization apparatus and cloth for packing diluting chamber of the demineralization apparatus
    US-5643968-AJuly 01, 1997The Graver CompanyProcess for producing ion exchange membranes, and the ion exchange membranes produced thereby
    US-7112267-B2September 26, 2006Qinetiq LimitedElectric-field structuring of composite materials
    WO-2010054778-A1May 20, 2010Südzucker Aktiengesellschaft Mannheim/OchsenfurtProcédé d’électro-ultrafiltration pour la détermination de la solubilité et de la mobilité de métaux lourds et/ou de polluants pour des matériaux de déchets et de résidus toxiques, ainsi que pour des sols contaminés par des métaux lourds et/ou des polluants